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There is a considerable body of work devoted to investigation of viscosity-gravitational 
flows in tubes. However, all the calculating recommendations in these communications relate 
to the case of stabilized flow. At the same time, in practically all real objects, the de- 
velopment of the process takes place in the initial section, since, for the onset of stabil- 
ization, a great length of the tubes is required. 

In the present work an analytical investigation was made of the limits and the character 
of the start of the effect of thermogravitational forces on the fields of the velocity and 
the temperature, the friction resistance, and the heat transfer in any arbitrary cross sec- 
tion along the length of round tubes, arbitrarily arranged in space, with a constant density 
of the heat flux at the wall (qw = const). 

We use the equation of motion, written for the curl 

do/dz  = (oV)U ~ v A o  ~ c ~ l  pg, (i) 

where m = curl u; u = ve r + we~ + Uex; g is the acceleration due to gravity; and ~ is the 
kinematic viscosity coefficient. 

The problem is solved with the following premises: i) the process is steady-state; 2) 
the physical properties of the liquid are constant with the exception of a change in the 
density, taken into consideration in the term of the mass forces; the dependence of the den- 
sity on the temperature is represented in the form p = pw, o[l -- ~(t -- tw, o)]; the coefficient 
of volumetric expansion 8 is assumed constant; 3) in the cross secti_on corresponding to the 
start of heating, the parabolic distribution of the velocity u I = 2u(l -- R 2) is given as 
fully established; 4) we consider viscosity-gravitational flow with a weak effect of thermo- 
gravitational forces, i.e., a small deviation from the values characteristic for viscous flow 
is sought; 5) the change in the parameters along the flow is considerably less than over the 
radius; the problem is solved with a boundary condition of the second kind qw = -- %~t/ 

I = const. Dr r=d/2 

In solution of the problem, in addition to Eq. (1), use is made of the equation of con- 
tinuity, written in dimensionless form 

a (R V ) +  ow 
O--R- -~- =0 (2) 

and the linearized equation for a small deviation of the temperature 

U'OO l Pe OTz t 0 R 0 6  i 0 ~  
-4 OX 2 V~-ff -- R OR O-R q- R "z 0r ~' (3) 

where R = 2r/d; d is the diameter of the tube; V = v/~ is the radial component of the veloc- 
ity; W = w/u is the tangential component; u is the mean velocity; and ~ = (t -- t/)I/qwd = 

[(tw, / -- t/)I/qwd ] -- [(tw, / -- t)l/qwd] = T l -- T. 

For solution of the problem, we need to know the field of the temperature with viscosity 
flow T l along the whole length of the tube. The results of numerical [i] and analytical [2] 
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solutions with constant physical properties and qw = const are correlated in the interval 
5 . 1 0  - a  < X < ~ i n  t h e  f o r m  o f  t h e  f o l l o w i n g  i n t e r p o l a r i o n a l  d e p e n d e n c e s :  

for R ~ R 
m 

4 R2+e .~t ~+2a~  (4) 
r t  = T ~  1 - - - g - _ ~  -l- 3 ~ *  / '  

where 

for R _ R 
m 

where X = x/Ped; 

T m =  (3/8)[t - -  exp(--78X)];  B ,  = (R - - / ?m) / ( l  - - /Gn) ;  

Rm = exp(- -  t41./'2); a = 0,03X-2/a; 

r~ = r~ ,  (5) 

Pe = Pr.Re is the Peclet nu_mber; Re = u--d/v is the Reynolds number; Pr is 
the Prandtl number; and U' = (U -- UL) = u'/u is the deviation of the axial component of the 
velocity. 

The dimensionless temperature | is described by the expression 

0, t b- t+)~q_. t ,~ ,z - t  bL t , , , , , - - h ~ = 4 X §  t - - - - f l ,  (6) 

where t b is the mean-mass temperature of the liquid in a given cross section; t+ is the tem- 
perature of the liquid in the inlet cross section; t w is the temperature of the wall; t I is 
the temperature of the liquid with laminar flow; and Nu = qwd/X(tw -- t b) is the Nusselt num- 
ber. 

In accordance with the assumptions given in [3], the Nusseit number Nu~ is satisfactor- 
ily described by the expressions 

l /Nut = X * / a / t , 3 1 ( i  @ 2 X )  ~r  X < 0,037, (7) 

Nut = 4.36 for X > O . 0 7 ,  

where Nu I is the Nusselt number with laminar flow. 

It is not possible to obtain a solution in general form using dependences (4)-(7). 
Therefore, solutions are sought for six values of the reduced length X = x/Ped (X = 6,5~ 
10-z; 1.84"i0-3; 5.2"i0-~; 1.47-10-2; X > 0.07), corresponding to the values a = 4, 3, 2, 
i, 0.5, and 0. 

In accordance with the assumptions adopted, Eq. (I) in projection on the axes of cylin- 
drical coordinates in dimensionless form is written in the form 

d"- l d De Gr Or z cos~;  (8) 
dR 2 ~2~ § 7 "  - ~  ~ R~ - -  4- ~e 0R 

(RT,~ t 0 R 0 ~ x  t 62~ x Gr 0 .  ~ " t ' . . . .  ~ - ~  s i i  q~.s in~;  (9 )  tl Oil. ~ @ t,'"- 0~  2 4 l i e  

t 0 R O'Qr ' 02~r Re dU! Ol" 
t? 0tr - 0 7 [ - r - ~  --  2 Rdl~ Oq)' where (10) 

- -  2t---~ = ~q~,z + ~q'~ . . . .  OU/OB,  U = Ul + U' ; (11) 

~ =~ ;~  = ~ ~ --g4-J,w=w,v=v'; (12) 

t 
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where ~ is the angle around the periphery of the tube, reckoned from the upper generatrix; 
is the angle between the axis and the vertical; and Gr = g~qwd4/Xu a is the Grashof number. 

The system of equations (2), (3), (8)-(10) is solved with the following boundary condi- 
tions: 

for R = 0 all the values are finite; for R = i, U = 0, V = 0, W = 0, 3~/3R = 0; for 
R = R m, all the functions and their derivatives are equal, respectively, to ("linking" of 
solutions for the core and prewall regions) 

i 

forq)- -~/2  . J ' W d R = O ;  
0 

for~!) = O a n d R  = 0 , OU/OB == O, O~/OB = O; 
1 t 

0 0 

Solving Eq. (8) in accordance with the recommendations of [4], and using the above 
boundary conditions, from the definition (11) we obtain an expression for the fraction of 
the axial component of the velocity, due to the action of axial forces: 

Or Tm {0.75 R~ (2 -- R~)  X Va = U z  ~ U~ = 2(1  - - R  2) + 

1 i 

x ( l - - R  ~ ) + 2 ( I - R  2) ,!" R2FdR-- ~J rdR + 
R m R m  

r075R --0.75R (i--21-Rm) for R<Rm]i 
(14) 

where r = f(R, X). 

The results of a numerical calculation using Eq. (14) are approximated for all values 
of X and R by the interpolational equation 

i0_3 Gr [1 - -  exp (--  72 X) 3/2 x U a = 2 ( i - - R  ~)~:2 .25 .  , ~ -  

X {i--[i.t(2--R)3/Zsin~O.6~R~-{-O.isin~R] ~ i + [ i - - l ' 5 e x p (  - i 5 0 X ) ] ( i - R 2 ) - ~ } c ~  (15) 

We shall seek the component of the curl ~x from Eq. (9) in the form of the product 

~x = A~(R, X)sin ~ . s in  ~. 

After substitution of this expression into Eq. (9), we obtain an equation with respect to Ax, 

analogous to (8). 

After finding the distribution of ~x for the above six values of X, the distribution 
of the tangential W and radial V components of the velocity is sought from the relationship 
(12) and the equation of continuity (2). Under these circumstances, for W a substitution 
analogous to that for ~x is used, and an equation of the ~f~ of (8), into whose right-hand 
side the function ~x is again solved. 

The calculated distributions of V are approximated by the interpolational equation 

V = - -  (Gr/800R~ [l - -  exp(-- i2 .5  ]/ 'X')](l - -  R~)~os ~.s in  ~. 

Figure i shows the distribution of the tangential component of the velocity in the hori- 
zontal diametral plane and the radial component of the velocity in the vertical diametral 
plane with ~ = ~/2 and values of X = 5.2-10 -3 (curve I), X > 0.07 (curve II) for the case 
of a heated wall. The distribution of the components of the velocity shows that the second- 
ary free convective currents form a system of two longitudinal eddies with ascending near the 
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wall and descending flow near the axis. With exactly the same value of Gr/Re, the intensity 
of the secondary currents decreases with a decrease in X. In the case of cooling of the wall, 
the direction of the secondary currents is the contrary. 

Using the substitution ~r = Y sin ~ x sin 4, Eq. (i0) can be transformed, with respect 
to y, to a form analogous to (8). From (13) we find the deviation of the axial component 
of the velocity U v' due to secondary flows, 

Yv" =~-~Gr i { __ e x p ( _ t 2 . 5 V - X ) ] R 2 ( _ 0 . 3 7  + 0 . 6 6 7 R _ 0 . 5 3 2 R u  + - 

0.342Bs--O.128RT+O,O2Rg)cos ~ - s i n  ~. (16) 

Since the problem is being discussed within the limits of a linear approximation, the 
total deformation of the axial component of the velocity U' can be represented in the form 
of the sum of two terms described by relationships (15), (16), 

U = Us + U' = U~ + U~ + U~. (17) 

We note that the parameter characterizing the effect of free convection on forced flow 
is different for different components of the velocity and for a different orientation of the 
tube with respect to the field of the force of gravity. Thus, the parameter Gr/Re enters 
into the description of the distribution of the tangential and radial components of the ve- 
locity, while the parameters Gr/Re and Gr enter into the description of the axial component. 
For the two extreme positions of the tube, the deformation of the axial component of the ve- 
locity is described by different parameters: with a vertical position (4 = 0), by Gr/Re; with 
a horizontal position (4 = ~/2), by Gr. The change in the parameters describing viscosity- 
gravitational flow and the heat transfer with different positions of the tube was pointed out 
in [5], which discussed an analogous problem for stabilized conditions. Figure 2 shows the 
deformation of the axial component of the velocity in the vertical diametral plane, calculat- 
ed using dependences (15)-(17) for four positions of the tube, starting from the vertical 
(4 = 0) and ending with the horizontal (4 = ~/2). The calculation was made for the values 
Gr = 2.10", (Gr/Re) = 200, with values of the reduced length X = 5.2.10 -~ (curves i) and 
X > 0.07 (curves 2). The distribution of the velocity with viscosity-gravitational flow is 
compared with the parabolic profile with laminar flow (curves 3). Figure 2a~ b shows the 
cases of flow upstream and downstream in a heated tube. 

With a vertical position of the tube, the deformation of the profile of the velocity is 
described by the parameter Gr/Re. With an increase in the angle ~ between the vertical and 
the axis of the tube, secondary flows start to develop and the deformation of the profile 
of the velocity U is described both by the parameter Gr/Re and by Gr. In the case of a hori- 
zontal position, the deformation of U is described by the secondary flows~ and is character- 
ized only by the value of the Gr number. The secondary flows lead to an increase in the ve- 
locity in the lower part of the tube (q'= ~). 

Using the relationships 

~l~=i= ~ ~ a 2 i '~d~,  dRR=l = ~ 2~' (Tw>= ' 
0 
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we obtain an expression determining the change in the mean friction stress at the wall (Tw) 
over the periphery and, consequently, also the coefficient of the friction resistance ~: 

GrTmr F j ] Gr 
(%5%a =-~-~ = l - + T f ~ [ - -  I R = i § 2 4 7  r  

Values of X(X) were calculated for the six previously mentioned values of X and are approx- 
imated by the interpolation equation 

it(X) = 2 . t 0  -3 [ t - - e x p (  --  t 2 6 X ) P / ~ .  

We obtain the deviation of the temperature ~ from Eq. (3) in the form 

= (%cos q).sin ~p + o)~ cos ~p. (18) 

After substitution of (18) into Eq. (3), by solution of two independent differential 
equations with respect to ~ and ~2 and approximation of the corresponding solutions in the 
interval 5-10 -~ < X < ~, the following expressions are obtained for ~ and ~2: 

(01 = 9 . 1  �9 t 0 - 6 R a  [t - -  exp ( - -  100X)] a klR for R < ~ k l . ~ k ~  
[1 @ k z ( t - - R )  for 1=I "> t q-k '  ' 

kl "4- k~) 

where 
kl ---- i q- 2.7[i  - -  exp(--48X)];  

k.. = 0.38[t - -  exp(--  10 I/X-)]; 
, Gr [(% - -  a2R 0~ q- aaR a - -  0.4B 6 q- 0.025R s) for R >~ Rm~ 

( ~  for R-~<Bm l 

where 

a o = 0.08611 --  exp(--40X)];  a~ = [t - -  0.65 exp(--40X)];  

a4 = t,0511 - -  0:3t exp(--40X)l ;  b o = 0.08611 - -  exp(--30X)l ;  

b~ = [i - -  exp(--65X)];  b4 = 0.251t - -  exp(--65X)].  

Relationship (18) shows that the deformation of the temperature field is determined by 
the parameters Ra and Gr/Re. Here, in the case of a horizontal position of the tube, the 
determining parameter, as for the velocity profile, is Gr/Re. In the case of a horizontal 
position, the deformation of the temperature field is determined by the number Ra = Pr Gr, 
and the deformation of the distribution of the axial component of the velocity, by the Gr 
number. Thus, depending on the value of the Pr number, with a horizontal (as well as with 
an inclined, although to a lesser degree) position of the tube, the most considerable factor 
will be the change in the profile of the velocity or the profile of the temperature. 

1 1 0  



In [6], on the basis of experimental data obtained with viscosity-gravitational flow of 
liquid in a horizontal tube, with a Prandtl number Pr~ 80, it is shown that, with exactly 
the same value of the Gr number, the deformation of the temperature profile is considerably 
stronger than the deformation of the velocity profile. Experimental data [7] on the profiles~ 
of the velocity and the temperature with viscosity-gravitational flow of air (Pr = 0.7) show 
that the degree of deformation of the profiles of the velocity and the temperature is approx- 
imately identical. These results are in qualitative agreement with the results obtained in 
the present work. Unfortunately, it is not possible to compare the results of calculations 
with the experimental data, since the experimental data were obtained with a strong effect 
of thermogravitation. From this there follows the conclusion that from the temperature 
profile it is impossible to judge the degree of the effect of thermogravitation in a flow 
of liquid metal with Pr << I~ 

The value of ~ at the wall determines the increase in the dimensionless temperature of 
the wall (consequently, also the Nu number), i.e., 

~l~=i = ~ = (t~--t~:Z)~/qwd = 1 / N u - - t / N u ~  = ~1~ cos ~ . s i n  ~ ~ ~2~ cos ~. (19)  

From relationships (18), (19) we obtain 

Nu/Nuz = I + Nuz{t,32. t0-4(OffRe) [1 - -  exp( - -40X)]cos  p } - -9 .1 .  i0  -s Ha [I - -  exp(- -100X) Is cos 9 ' s i n  ~. (20)  

Figure 3 shows the change in the relative value of the Nusselt number at the upper (9 = 
0, solid curves) and lower (9 = ~, dashed curves) generatrices of the heated tube as a func- 
tion of the angle ~ between the vertical and the axis of the tube. Within the limits of the 
value of the angle 0 E ~ < ~/2, there is flow from the bottom upwards and with ~/2 < ~ ~ ~, 
flow from the top downward. Curves 1-5 relate to the case of the greatest effect of thermo- 
gravitation along the length, i.e., to a value of X > 0.07. With a decrease in X the effect 
of thermogravitation decreases, as follows from all the dependences given. Curves 1 were 
obtained with the values (Gr/Re) = 250, Ra = 5.103 With all values of the angle ~, with the 
exception of the immediate vicinity of the vertical position within limits not exceeding I0 ~ 
there is a considerable difference in the heat transfer at the upper and lower generatrices. 
Under these circumstances, the heat transfer at the lower generatrix takes on a maximal value 
(or a maximal value at the upper generatrix) somewhere in a middle position of the tube be- 
tween the vertical and the horizontal. With a decrease in the Prandtl number (actually, a 
decrease in the Ra number), the difference in the heat transfer at the upper and lower genera- 
trices decreases. Curves 1-3 relate to exactly the same value of Gr/Re, but to different 
values of Ra. The value of Ra for curves 2 is 4 times lower than for the curves I, while, 
for curves 3, the Ra number Ra < 102 . Curves 3 actually correspond to the viscosity-gravi- 
tation flow of liquid metals. For the given set of parameters, the local heat transfer of 
liquid metals in horizontal tubes is insensitive to the effect of thermogravitation, while, 
in vertical tubes, this effect will be considerable. It must be recalled that, here, there 
is a strong deformation of the profiles of the velocity in horizontal and inclined tubes, as 
is shown in Figs. 1 and 2. Curves 4 and 5 show the change in the heat transfer with the same 
values of Gr and Pr as for curves i, but with different values of Re. A change in the Re 
number has an effect on the heat transfer in vertical tubes. Curves 4 were plotted for a 
value of (Gr/Re) = 500, and curves 5 for (Gr/Re) = 125. The effect of the reduced length is 
illustrated by curves 6, which were plotted for X = 5.2.10 -3 , and other parameters corre- 
sponding to curves 4. It can be seen that the heat transfer in inclined tubes varies in a 
very specific manner. Specifically, with some inclinations, there is the possibility of situ- 
ations where the heat transfer along one generatrix practically does not change, while along 
the other generatrix it varies considerably. 

Figure 4 shows a comparison of calculations of the local heat transfer in accordance 
with the dependence (20) with experimental data, obtained with the viscosity-gravitational 
flow of water in horizontal [8] and vertical [9] tubes. Line 1 corresponds to the case of 
laminar flow. The experimental data 1 on heat transfer at the upper and the data 2 for heat 
transfer at the lower generatrices of a horizontal tube were obtained with Ra = 7.106o The 
corresponding curves 4, 5 were calculated for the same value of Ra. The experimental data 
3, obtained in a vertical tube, and the calculated curve 6, relate to the value (Gr/Re) = 
1.2-10 ~. On the basis of comparison with the experimental data, a conclusion can be drawn 
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with respect to the correctness of the calculation, within the validity of the assumption 
of smallness. 

LITERATURE CITED 

i. V.D. Vilenskii, B. S. Petukhov, and B. E. Kharin, "Heat transfer and resistance in a 
round tube with the laminar flow of a gaswith variable physical properties. III. Re- 
sults of a calculation with a constant heat-flux density at the wall of the tube," Tep- 
lofiz. Vys. Temp., ~, No. 3 (1971). 

2. R. Siegel, E. M. Sparrow, and T. M. Hallman, "Steady laminar heat transfer in a circular 
tube with prescribed wall heat flux,"Appl. Sci. Res. Sect. A, ~, No. 5 (1958). 

3. B.S. Petukhov, Heat Transfer and Resistance with the Laminar Flow of a Liquid in Tubes 
[in Russian], Izd. ~nergiya, Moscow (1967). 

4. E. Kamke, Ordinary Differential Equations, Akad. Verl.-Ges. Geest. und Portig, Leipzig 
(1959). 

5. Igbal and J. W. Stachiewicz, "Influence of tube orientation on combined free and forced 
laminar convection heat transfer," Trans. ASME, Ser. C, J. of Heat Transfer, 88, No. 1 
(1966). 

6. D.P. Siegwarth and T. J. Hanratty, "Computational and experimental study of the effect 
of secondary flow on the temperature field and primary flow in a heated horizontal tube," 
Int. J. Heat Mass Transfer, 13, 27-42 (1970). 

7. Y. Mori, K. Futagami, S. Tokuda, and M. Nakamura, "Forced convection heat transfer in 
uniformly heated horizontal tubes (First report--experimental study on the effect of 
buoyancy)," Int. J. Heat Mass Transfer, ~, No. 5 (1966). 

8. B.S. Petukhov and A. F. Polyakov, "Experimental investigation of heat transfer with the 
viscosity-gravitational flow of a liquid in a horizontal tube," Teplofiz. Vys. Temp., 
~, No. 1 (1967). 

9. B.S. Petukhov, A. F. Polyakov, and B. K. Strigin, "Investigation of heat transfer in 
tubes with viscosity-gravitational flow," in: Heat and Mass Transfer [in Russian], Vol. 
i, Izd. Energiya, Moscow (1968), p. 607. 

112 


